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I. Risk of Inadequate Design of Human and Automation/Robotic Integration 

The Risk of Inadequate Design of Human and Automation/Robotic Integration is 
identified by the National Aeronautics and Space Administration (NASA) Human Research 
Program (HRP) as a recognized risk to human health and performance in space. The HRP 
Program Requirements Document defines these risks. This Evidence Report provides a summary 
of the evidence that has been used to identify and characterize this risk. 

II. Executive Summary 

Successful integration of humans with automated and robotic systems is required to 
successfully accomplish both current and future NASA mission goals. Effective human 
automation/robotic integration (HARI) requires that automated/robotic systems and their human 
interfaces be designed to support all levels of human operation from direct manual control, to 
shared human-robotic control, or to human supervisory control. Integration of automated systems 
with their users requires that a variety of role allocations between the human and the automation 
be supported as it is expected that roles will vary based on contextual elements. Effective user 
interfaces, appropriately designed functional task allocations, and designs that adhere to a 
transparent system design philosophy ensure mission success and safety. The effects of an 
inadequate design of HARI may be immediate and direct or long-term and indirect. Poor design 
may measurably and negatively impact task time, workload, operator trust in the system, system 
state awareness, use of consumables, number of times repairs are required, and other 
performance-related measures. It may also lead to negative consequences by compounding 
interacting factors such as training, communication, fatigue or stress, and urgency and dynamics 
of the task. Multiple expert communities (design, accident investigation, and regulatory) have 
illustrated the need to develop methods, tools, and techniques to identify and address HARI 
vulnerabilities as early as possible in the design process. Risks from inadequate designs 
associated with human-technology interactions will increase as mission requirements become 
more demanding and as missions are carried out in unfamiliar circumstances substantially 
different from our experience base. Good design is not just implementing appropriate user 
interfaces, but considering how the operator integrates into the system that s/he is required to 
use.  If effectively implemented and evaluated, good HARI design reduces integration risks, 
reduces costs, increases efficiency, and enhances safety.  Future HARI research and design 
should be proactive and anticipate potential issues that may arise during future exploration 
missions. Four key contributing factors to the risk of inadequate HARI include: 1) Assignment of 
Human and Automation Resources, 2) Perceptions of Equipment, 3) Design for Automation, and 
4) Human/Robotic Coordination. 
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III. Risk Statement 

Given that automation and robotics must seamlessly integrate with crew, and given the 
greater dependence on automation and robotics in the context of long-duration spaceflight 
operations, there is a risk that systems will be inadequately designed, resulting in flight and 
ground crew errors and inefficiencies, failed mission and program objectives, and an increase in 
crew injuries. 

IV. Risk Overview 

National Aeronautics and Space Administration missions depend on humans interacting 
with automated and robotic systems to accomplish mission goals. Future missions will see an 
increase in this dependency for both near- and deep-space exploration missions, including near-
Earth object and planetary surface operations. This dependency will be the case for crew in space 
and controllers on the ground.  

In accordance with NASA's vision, operations involving crew-robot and crew-automation 
interactions will increase substantially relative to current operations. Automation is the use of 
machines or computers, generally for the purpose of increasing productivity and reducing human 
cognitive workload. In space systems, automation is required to support a highly diverse set of 
functions and operations that in turn, necessitate a variety of amounts and types of automation. 
The required automation systems will span ground and flight systems and will support functions 
from controlling the habitat to conducting science experiments. Beyond automation, there is 
robotics. Hancock, Billings, Schaefer, Chen, and Parasuraman (2011) characterize robots as 
mobile, having a human or animal form, and intended to “effect action at a distance;” the latter 
attribute being of significant importance for space and planetary exploration. Dexterous, heavy-
lift, and mobility systems are the classes of robotic systems expected for near- and deep-space 
exploration missions.  

Human-robot teaming will be a cornerstone of future operations. Robotic systems and 
their human interfaces must be designed to support all levels of human operation (direct manual 
control, shared control, and supervisory control). They must also support multiple robot 
operators in multi-agent team configurations, with those operators separated by time, space, or 
both. These mixed-initiative systems will have to support multiple operators, varying time 
delays, and increased reliance on high and variable levels of automation. Similarly, the 
integration of automated systems with their human users requires supporting a variety of role 
divisions: authority and autonomy can be differently allocated between human and automation, 
and that allocation may change dynamically depending on task or context. 
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Ineffective user interfaces, poor system designs, or ill-advised functional task allocation 
compromise mission success and safety. As a result, the design of effective human 
automation/robotic integration (HARI) is essential. There are gaps in our knowledge and 
experience for the expected level of complexity of future automated and robotic operations. 
Concerning robotics, risk arises because we have limited experience with teleoperation, time-
delayed operations, and multi-robot operations. For example, poorly designed human interfaces 
can result in a loss of situation awareness, compromising mission safety and efficiency. Of 
special concern are losses of situation awareness that occur while a crewmember is in close 
proximity to a robot, with the consequent risk to crew safety. Crew must be able to ascertain and 
understand the state of a robot, affect or change its command, and override the system whenever 
necessary.  

Currently, most work in space is performed by the crew, supported to some degree by on-
board automated systems (e.g., for environment control) and to a larger degree by ground-based 
Mission Control, therefore human-automation integration will be critical in space as well as on 
the ground. In space, tasks will need to be completed by fewer people and with fewer external 
resources and support. In addition, crewmembers will have less training and experience in any 
particular activity compared to a ground team specialist. Further, ground control will need to 
provide different forms of support for the crew and vehicle, focusing more on longer-term 
projections, modeling, anticipatory troubleshooting, and monitoring health of systems and crew. 

In short, mission complexity will increase as mission familiarity and experience decrease. 
This means that the challenges to effective design of automation and robotics also increase. A 
critical aspect to meeting automation design challenges is a focus on integration (Terwiesch and 
Ganz, 2009). Automation and robotics must be well integrated into the process and the workflow 
it is designed to support. As complex missions will require multiple automation systems, robots, 
and people, it is critical to design with an awareness of how multiple agents (people, automation, 
or robots) can and should be coordinated. Human-system integration that includes robotics and 
automation into mission design is not simply about reassigning tasks between people, automation 
and robotics. Changing the roles and assignments lead to changes in the work, shifts times of 
peak human workload, and creates new, often challenging tasks for humans such as supervisory 
responsibility. Hence, emphasis must be placed in integrated design of these complex systems. 

A. Aerospace Examples of Ineffective HARI 

In the space domain, the Mir-Progress collision is an example of a near-catastrophic 
accident that resulted from inadequate human-automation integration based on a poorly designed 
operations concept and insufficient needs analysis. The Russian spacecraft Progress 234 collided 
with the Mir space station, causing the Mir pressure hull to rupture, and nearly causing the space 
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station to be abandoned (Ellis, 2000; Shayler, 2000). The original operations concept was that 
Progress would dock automatically with the Mir. Crew responsibilities were primarily to cancel 
the approach (if necessary) and limited crew displays were provided. Crewmembers were later 
tasked to perform the docking manually, following a decision not to install automatic docking 
systems for each Progress spacecraft. This change however was not followed up with an impact 
assessment of integrated human-system performance. It neglected consideration of the types of 
information crewmembers would need to remotely control another vehicle, and thus, no 
additional displays were provided. Future effective HARI must be included in the design process 
so as to minimize safety issues like that illustrated by the Mir-Progress collision.  

 
Figure 1: Spektr module showing the damaged radiator and solar array on Mir (NASA photograph) 

In the aviation domain, many human-automation interaction difficulties for commercial 
aviation are attributable to inappropriate designs. The U.S. Federal Aviation Administration 
(FAA) and the European Joint Aviation Authority recognized an increase in accidents 
attributable to problematic interaction between flight crews and flight deck automation. The 
FAA released a report listing design deficiencies contributing to aviation incidents and accidents 
and made recommendations for improvement, including the need for new design and evaluation 
tools in 1996 (Federal Aviation Administration [FAA] Human Factors Team, 1996). Research 
from the following communities are important: the design (C. E. Billings, 1997; Curtis, 1981; 
Leveson, 1995), the accident investigation (Mellor, 1994; Sarsfield, Stanley, Lebow, Ettedgui, 
and Henning, 2000), and the regulatory (Australian Bureau of Air Safety Investigation [BASI]), 
1999; The Interface between Flight crews and Modern Flight Deck Systems, 1996). These 
communities have also illustrated the need to develop methods, tools, and techniques to identify 
and address human-automation interaction vulnerabilities as early as possible in the design 
process. Mishaps due to design errors (i.e., mishaps where automated systems performed as 
designed but aspects of the design contributed to the accident) are increasing (Sarsfield et al., 
2000).  

 



 

5 

 

B. Dependencies & Interrelationships  

Good design of HARI must support effective execution of system functions under 
nominal and off-nominal conditions. Many factors affect the adequacy of designs of human and 
automation/robotic integration, and an inadequate design can produce many interrelated effects. 
Effective intervention to minimize risk from inadequate design requires a multi-faceted, systems-
level approach.  

The effects of an inadequate design of HARI may be immediate and direct, such as an 
operator selecting an unintended action or a robot harming an astronaut. They may also be long-
term and indirect, such as an unusable design contributing to human stress or an unclear design 
resulting in operation of equipment in configurations that produce unnecessary wear. It is 
important to be able to measure the consequences of inadequate design beyond merely 
documenting the occurrence of rare, catastrophic accidents. Poor design may measurably and 
negatively impact task time, workload, use of consumables, number of times repairs are required, 
and other objective and subjective performance measures. The key point is that poor design can 
lead to many different types of negative consequences and can be caused by multiple, interacting 
factors. Effective risk reduction requires a systems-level analysis of HARI. This is needed to 
understand and intervene on multiple interacting causes.  

The effects of an inadequate design of HARI may manifest in various ways, but it is 
important to understand that these effects could be caused by interacting operational factors. For 
instance, how controllers are trained, the amount of communication between ground and crew, 
the level of controller fatigue or stress to be supported, and the urgency and dynamics of the 
tasks being carried out are examples of interacting factors. These are all contextual factors that 
are not necessarily inherent to the system design itself, however, they can affect how the quality 
of the system is perceived or assessed. These factors may interact such that safety-reduction from 
one factor increases vulnerabilities from another.  

It is important to understand and acknowledge the overlap between the HARI risk and the 
Risk of Inadequate Human-Computer Interaction (HCI). These two risks are virtually 
inseparable, given that human-automation and human-robot interactions are, in fact, human-
computer interactions involving a user interface. Both areas are concerned with the interactions 
amongst humans and computer machines to affect a more productive and error-free system. HCI 
is the study and design of human computer interaction and interfaces. HARI is the study and 
design of the interactions between humans and automation and robotics. While for instance, 
HARI risk would focus on how humans operate robots, HCI considerations are necessary to 
enable effective communication between the human and the robotic agents. These risks are 
inherently overlapped due to the nature of working with complex human-systems.  



 

6 

 

For the purposes of classification within the Space Human Factors Engineering (SHFE) 
portfolio, if a project or topic explicitly involves a robot, focuses on interaction with automation, 
or the effects of automation, or deals with assignment of tasks to agents – it is considered a 
HARI risk, with a secondary risk of Inadequate HCI. If a project primarily focuses on the user 
interface, and not interaction with a robot or automation, it is assigned to the HCI risk.  

An example from Apollo 13 illustrates how both HARI and HCI risks are important and 
interrelated. During Apollo 13, management of an equipment failure was compounded as the 
system state was provided in a form that did not facilitate anomalous error detection (e.g. 
difficulty in early diagnosis (Murray and Cox, 1990), cited in (Woods et al., 2010)). In this 
example, poor displays could be attributed to the HCI risk, while poor allocation of the function 
of detecting off-nominal data (to a person vs. automation) could be attributed to the HARI risk. 
Inadequate HCI and/or HARI can lead to errors and efficiencies, failed mission and program 
objectives, and an increase in crew injuries. Risks specific to HARI include, but are not limited 
to, stress, loss of situation or mode awareness, haphazard actions, robot harming an astronaut, 
and unnecessary wear on equipment. 

In addition to being related to the Risk of Inadequate HCI, the Risk of Inadequate 
Human-Automation/Robotic Integration is related to two other Space Human Factors 
Engineering risks: the Risk of Inadequate Critical Task Design (TASK) and the Risk of 
Performance Errors Due to Training Deficiencies (TRAIN). 

The HARI risk focuses on those issues that are specifically related to semi-autonomous 
systems – robotics and automation. The TASK risk is concerned with tasks, schedules and 
procedures. Many tasks are performed using automated or semi-automated systems or robotics, 
thus there is a heavy interaction between the TASK and HARI risks. The emphasis in TASK is 
on factors related to the flow of the work: operational tempo and workload; procedural guidance; 
training for specific procedural knowledge. Supervision or monitoring of automated or robotic 
systems can be an important component of task design, and especially when workload is 
considered (e.g., where monitoring of autonomous systems is performed simultaneously with 
other tasks) and where procedural guidance provides critical information about the modes, 
parameters, or limitations of automated or robotic systems. 

The TRAIN risk interacts with HARI in that systems with poor HARI design may be 
non-intuitive, and require more training. The research under TRAIN addresses best methods of 
training for different purposes, including individual and team activities, for skills and knowledge. 
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C. Levels of Evidence 

The levels of evidence presented in this chapter include case study, expert opinion, 
terrestrial data, expert data, and spaceflight incidents. Evidence presented in this chapter 
encompasses lessons learned from 50 years of spaceflight experience and ground-based research 
related to the risk of inadequate human and automation/robotic integration. A variety of evidence 
types is available, which differ both with respect to the method used to collect evidence and with 
respect to the context or domain of the evidence. Concerning method, evidence comes from both 
formal and informal methods. Informal methods include post-hoc reports of naturally occurring 
events (including incidents and accidents) and case studies. Formal methods include systematic 
logging or survey of naturally occurring events, and interviews with or surveys of experts. The 
most formal method of gathering evidence is controlled experimentation. Some evidence is 
reliant on simulated data from models of human behavior, of automation or robotic system 
behavior, or of human-system interaction, particularly for circumstances in which it is hard to 
directly observe and gather empirical data. 

A summary of Levels of Evidence may include, but not be limited to: 

• Post-hoc reports of naturally occurring events 
• Case study  
• Expert data  
• Expert opinion 
• Spaceflight incident data 
• Terrestrial data  
• Modeling 
• Controlled experiments 

Concerning context or domain, relevant evidence for HARI may come from space 
operations (both in-flight and on the ground), from aviation or other safety-critical work 
domains, or from other domains with extensive or advanced automation or robotics. Typically, it 
is difficult to conduct experiments in-flight, so experimental data is most likely to come from 
simplified tasks or related domains, while in-space data is more likely to come from case studies. 

Portions of the evidence consist of summaries of subjective experience data, as well as 
non-experimental observations or comparative, correlation, and case or case-series studies. It 
should be noted that some evidence in this report is derived from the Flight Crew Integration 
(FCI) International Space Station (ISS) Life Sciences Crew Comments Database. Although 
summaries of ISS crew comments are presented as evidence, the raw comments in the Life 
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Sciences Crew Comments Database are protected and not publicly available, due to the sensitive 
nature of the raw crew data it contains.  

V. Evidence 

There is extensive evidence that poor HARI design produces safety-critical errors. Some 
evidence comes from in-space applications. There is also a large body of evidence from analog 
domains, such as aviation and medicine, in which highly-skilled users interact with complex 
technical systems. Evidence and information from analog mishaps is used to develop systems 
involving similar situations and skills. However, this reactive design stance primarily “chases old 
problems” rather than forestalling the new. A proactive design stance is particularly valuable 
because, unlike in aviation, the experience base in space is relatively small and circumstances of 
operations change from mission to mission. Thus, information from prior mishaps is only a 
partial guide to the many novel situations where we lack specific experience. Future research on 
HARI will need to investigate those circumstances where we lack direct knowledge. Research 
will also need to develop methods for extrapolating knowledge from known to less-understood 
conditions and to integrate the extensive, but sometimes fragmentary, knowledge we have. 

The risk of inadequate HARI includes four core contributing factors: 1) Assignment of 
Human and Automation Resources, 2) Perceptions of Equipment, 3) Design for Automation, 4) 
Human/Robotic Coordination. Each is described subsequently. 

A. Contributing Factor 1:  Assignment of Human and Automation Resources 

Human automation/robotic integration requires appropriately allocating functions among 
agents, be they people, automation, or robots, to drive efficient systems design. Inappropriate 
distribution of functions among humans and automation/robotics may result in inefficient and 
unsafe operations, threatening mission completion. Allocating tasks determines the role people 
must play in future complex, automated systems. Unsuitable allocations may have the 
repercussions of overwhelming or underutilizing humans under normal and/or emergency 
situations.  

The idea of assigning functions or tasks to humans or automation/robotics has been 
around since the 1950s. Fitts (1951) proposed a set of human-computer role allocations based on 
the strengths and capabilities of each (summarized in Table 1). Fitts’ list has been modified by 
many to develop other guidelines regarding task allocation and levels of automation. Systems 
differ, so it is difficult to establish exactly which tasks should be automated and to what degree 
of automation. de Winter and Dodou (2011) highlight that since its original inception, much in 
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the human-automation world has changed, and hence, the list may be considered flawed, 
outdated, incomplete, and disregarding human-machine integration.  

TABLE 1: FITTS HUMAN-COMPUTER ROLE ALLOCATIONS 

Humans are better at: Computers are better at: 

Perceiving patterns Responding quickly to control tasks 

Improvising and using flexible procedures Repetitive and routine tasks 

Recalling relevant facts at the appropriate time Reasoning deductively 

Reasoning inductively Handling many complex tasks 

Exercising judgment Fast and accurate computations. 

 

An alternative allocation list is Sheridan and Verplank’s Levels of Automation (LOA) of 
Decision and Action Selection coupled with Parasuraman and Sheridan’s (2000) model of types 
and levels of automation (Table 2, Sheridan and Verplank, 1978; Sheridan and Parasuraman, 
2005). Parasuraman and Sheridan (2000) determined that it is more practical to provide 
guidelines—rather than rigid rules—to assist in determining which tasks should be automated 
and at which levels of automation. Other frameworks to allocate human-automation functions are 
provided by Riley (1989) and Endsley and Kaber (1999). These further expand the amount of 
automation relative to specific types of functions. The authors of this report do not know of 
frameworks that describe guidelines for human-robotic allocation according to the type of task. 

In some ways, these frameworks for function allocation among human and 
automation/robotic resources imply that a particular design operates at only one automation 
level. Visser, LeGoullon, Freedy, A., Freedy, E., Weltman, and Parasuraman (2008) cite 
Opperman (1994) in describing flexible automation that can adjust and respond to user needs, 
environmental demands, and context as being referred to as adaptable or adaptive automation. 
Under such circumstances, allocation between humans and automation/robotic resources could 
change depending on the context of the work. To successfully complete future space missions, 
we will need autonomous systems (e.g. unmanned vehicles, robots, rovers, habitats) that can 
adapt to unexpected events and endure extreme environmental conditions, through human or 
system-induced modifications. Visser et al. (2008) further discriminate between the adaptable 
and adaptive automation: they describe the former as cases where change is induced by the 
operator, while the latter covers cases where change is induced by the automated or robotic 
system. Adaptive automation may turn out to be critical for space exploration because of the 
many unknowns that exist in deep space and surface exploration. 



 

10 

 

TABLE 2: LEVELS OF AUTOMATION 

Automation 
Level 

Automation Description 

1 The computer offers no assistance: human must take all decision and actions. 

2 The computer offers a complete set of decision/action alternatives, or 

3 Narrows the selection down to a few, or 

4 Suggests one alternative, and 

5 Executes the suggestion if the human approves, or 

6 Allows the human a restricted time to veto before automatic execution, or 

7 Executes automatically, then necessarily informs humans, and 

8 Informs the human only if asked, or 

9 Informs the human only if it, the computer, decides to. 

10 The computer decides everything and acts autonomously, ignoring the human. 

 

When considering adaptive automation, the LOA transitions need to be also taken into 
account. Transitions can be sequential or discontinuous (referred to as distance) and go from 
fully manual to fully automatic or fully automatic to fully manually (referred to as direction). 
Automation level transitions exhibit performance costs, particularly during the engagement and 
disengagement processes. When an operator changes from one level of automation to another, 
s/he must reorient to the current system status and operating level, which can decrease situational 
awareness and precipitate out-of-the-loop performance costs (see also Contributing Factor 3). Di 
Nocera, Lorenz, and Parasuraman (2005) maintain that the higher the current LOA (prior to LOA 
transition), the worse the “return-to-manual” performance. However, it is acknowledged that this 
may not be the case (Lorenz, Di Nocera, Röttger, and Parasuraman, 2002) so long as the 
interface is designed to facilitate information sampling, thereby maintaining operator situational 
awareness (Di Nocera, et al., 2005). Little research has been done on LOA transitions, and so we 
have only a limited understanding of the effects of distance and direction of LOA changes on the 
loss or maintenance of situational awareness.  

While these frameworks describe options for human-automation/robotic allocations, 
determining which of these allocations works best for a particular system remains a challenge 
and hence, a contributing factor for the risk of inadequate HARI. There is limited guidance on 
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how to apply any of these allocations. Parasuraman and Sheridan (2000) suggest first assessing 
the human performance consequences relative to the levels of automation flowchart to determine 
a range of appropriate degree of automation. From there, the options can be narrowed down upon 
further review. Human performance consequences include factors such as safety, mental 
workload, situation awareness, operator trust or distrust in automation, complacency, skill 
degradation, and mode awareness. Second, the reliability of automation and costs of decision or 
action should be evaluated. Methods to estimate reliability include fault and event tree analysis 
and methods for software reliability analysis.  

In the space domain, task allocation for effective HARI is further complicated by the 
challenge of how to appropriately determine the complete set of required tasks and functions. 
This is, in part, because the work that is encompassed by human space missions has never been 
accomplished before and the required technology does not yet exist. As a result, a complete 
analysis of all tasks and functions is difficult. If there is not an adequate identification of the 
work functions needed, no partitioning of functions can be very satisfactory. Thus, effective 
allocation of function also depends on effective processes for needs analysis.   

Typically, an analysis of all tasks and functions is called a needs analysis. This requires 
an understanding of mission operations, the particular functions that an automation/robotic 
system is supporting, and of how these functions coordinate with related functions. Many 
methods have been suggested: task analysis (Kirwan and Ainsworth, 1992), Work Domain 
Analysis (Vicente, 1999), and Contextual Inquiry (Beyer and Holtzblatt, 1997). Furthermore, 
effective HARI design needs to be integrated with process or workflow design (Beyer and 
Holtzblatt, 1997; Woods et al., 2010). Once an appropriate needs analysis has been conducted, 
this information must be linked to the design, development, and evaluation processes, which are 
typically handled as part of software or systems engineering. The assurance that a system meets 
the identified needs is particularly important for safety-critical systems. 

Research in the appropriate human-automation functional allocation for specific tasks 
exist (e.g., Cummings and Bruni, 2009, Butler et al., 2007), however, additional research is 
needed to provide the empirical base from which generalizations can be made. A particularly 
challenging issue is developing the theoretical framework to guide how findings from one 
situation or task can be generalized to another. Furthermore, research is needed to understand 
how these frameworks must be adapted to include appropriate allocations in the context of 
robotics.  
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B. Contributing Factor 2: Perceptions of Equipment 

The way operators view an automated system has a strong influence on how effectively 
the human-automation system functions. In this context, researchers have focused on the degree 
of trust and reliance that humans place on their automation.  

Achieving an appropriate level of operator trust in automation and/or robotics is 
imperative for safety and successful mission completion. The operator must be cautious not to 
over or under-rely on automation or robot. Over-reliance will diminish the operator’s situation 
awareness, placing all decision-making control in the hands of automation; under-reliance will 
inundate the operator’s mental workload, relying solely on him/herself. An example of over-
reliance on automation, with serious outcomes, involved failure to detect that the global 
positioning system component of the auto-navigation system on a cruise ship had failed. As a 
result, the Royal Majesty was run aground (Degani, 2004; Lee and See, 2004).  

When trust is high, operators are likely to rely on automation, i.e., to act as indicated by 
alarms or hazard indicators, but may be too “compliant” and fail to respond to unidentified 
hazards or hazards incorrectly identified by the system (Sheridan and Parasuraman, 2005). Over-
reliance is also considered a symptom of automation bias (Cummings, 2004; Mosier, Skitka, 
Heers, and Burdick, 1998; Skitka, Mosier, and Burdick, 1999). Automation bias is where the 
operator will have the tendency to disregard or search for contradictory information against the 
automation, potentially resulting in errors of commission and omission (Mosier and Skitka, 
1996; Skitka, et al., 1999). On the other hand, under-reliance emerges when the user doesn’t trust 
the automation because it has failed too often. As a result, under-reliance could lead to 
automation not being employed (de Vries, Midden, and Bouwhuis, 2003; Lee and Moray, 1994). 
Additionally, operator reliance on automation can be affected by workload (Kirlik, 1993; 
Wickens and Dixon, 2007), and by sudden change in automation performance (Lee and Seppelt, 
2009).  

Trust in automation and/or robotics is interweaved with functional task allocation 
(another contributing factor in HARI). For instance, issues may arise at the transition point 
between prior, manual control of a function to new, automated control, as this change typically 
requires a reorganization of the operator’s tasks (Sarter, Woods, C. Billings, and Salvendy, 
1997). Tasks that require automation, like those that are time-critical with little time for operator 
to response (Parasuraman and Sheridan, 2000), must be designed and built to be highly reliable 
in order to gain operators’ trust. 

Inadequate training also plays a role in trust, leading to automation biases, over or under-
reliance on automation, increased operator workload, safety hazards, and failure of mission 
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objectives. Within the domain of human-robotic interaction, Oleson et al. (2011) acknowledge 
the importance of training to reduce biases and educate the operator on how the robot operates, 
including “capabilities…behaviors…and risks.” Similarly, other researchers (Billings, 1997; 
Oser, 1999; Sarter, 1996) believe that better methods of training should be developed to provide 
operators with a more thorough understanding of how the system works, why it works that way, 
and his/her overall role within the system (interrelating to the third HARI contributing factor). 
Wickens (1992) and Oser (1999) stress the importance of in-context training experience to 
supplement theory. A study that evaluated cross-training, suggests that human-robot cross-
training “promotes predictable patterns of human and robot action sequences” in addition to 
greater satisfaction of the operators’ expectancies by the robot (Nikolaidis and Shah, 2012). 

According to Oleson, Billings, Kocsis, Chen, and Hancock (2011), trust is affected by 
“trust antecedents,” which can be classified as human-related, robot-related, or environment-
related. Personality traits and prior experiences, which establish people’s expectations, would fall 
under the human-related category. In the robot-related category, examples include consistency in 
performance and degree of automation. Shared situation awareness and task complexity are traits 
that would be categorized as environment-related. In addition to these antecedents, Oleson et al. 
acknowledge the importance of training to reduce biases and educate the operator on how the 
robot operates, including “capabilities…behaviors…and risks.” Each of these aspects (i.e. trust 
antecedents and training), and any combination thereof, should be considered in the design 
process of a robot and during training. 

Effective HARI design should not be dependent on automation or robotics reliability 
because in the space domain, most systems are unique, one-of-a-kind, and are likely to be 
modeled incompletely or imperfectly. This makes it particularly challenging to design effective 
systems, and hence, focusing on understanding an operator’s calibration in the system might be 
more useful. It is important to understand the operator’s calibration with regards to the 
automation and/or robotic system in the context of trust. Calibration is the process by which the 
operator learns to modify his/her behavior based on the performance and reliability of the 
automated system (e.g. decision support tools, robotics) (McBridge and Morgan, 2010). For 
example, an operator’s calibration may deal with how much time is spent on monitoring the 
automation, or how often the operator does what is recommended by the automation. The 
optimal calibration is not necessarily one in which the operator monitors or complies with the 
automation all the time: the operator may have other things that make demands on his or her 
time, and the operator may justifiably believe automation is not always to be relied upon.  

McGuirl and Sarter (2006) convey that miscalibration of trust results in a mismatch 
between perceived and actual system performance. Trust calibration is a multi-faceted process 
because appropriately calibrating trust in automation and decision support tools strongly affects 
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mission outcomes. There are multiple instances in which researchers provide methods to assist in 
calibrating trust: 1) Fan, Hyams, and Kucher’s (1998) pilot decision-making study revealed that 
initially pilots rely on auxiliary information to validate an automated system’s resolution, and 
with time, as system trust increases, the need for validation decreases; 2) Maes’s (1994) interface 
agent model illustrates how time affects trust: the longer the operator spends with an automated 
system, the more knowledge s/he gains about how the system works, and thus increases his/her 
trust in the system; and 3) Cohen, Parasuraman, and Freeman’s (1998) model of trust in decision 
aids communicates that the operator must understand the automated system’s strengths and 
weaknesses, and the context in which each prevail (McBridge and Morgan, 2010). A few 
instances where miscalibration can occur include when automated systems’ performance is 
unreliable, inconsistent, or not transparent, operator system knowledge is low, and operators 
have too much or too little confidence in their abilities. 

C. Contributing Factor 3: Design for Automation 

Operators using complex automation and/or robotics may find themselves confused about 
what the automated or robotic system is doing because of the complexity of the task or because 
the relevant information is not available to the operator. This lack of automation transparency is 
often attributed to a variety of effects, subsequently discussed. This is a contributing factor for 
HARI because understanding how and why automated systems, including robots, are working 
becomes an essential part of how operators react under off-nominal conditions and unexpected 
situations. 

Lack of automation transparency has been attributed to operators’ inappropriate 
knowledge acquisition (Glover, Prawitt, and Spilker, 1997) and inability to maintain mode 
awareness (Sarter and Woods, 1994). Mode-related errors are known contributors in aviation 
accidents and incidents. There are two types of problems: difficulty in telling what mode a 
system is in and difficulty telling what a mode will do. For example, pilot training may teach 
only a subset of possible modes, leaving out unusual modes or those not used in airline 
operations policy. Pilot performance has latent problems, revealed in non-normal situations 
(Sarter and Woods, 1994). Problems can result because the system was in an unexpected or 
unrecognized mode or because the pilot could not predict behavior in an unfamiliar mode, or 
both (Sarter et al., 1997). In 1994, an A300 airplane crashed at Nagoya Airport. Prior to the 
crash, the mode had been inadvertently changed to “Go Around” rather than land. The pilot 
fought against the autopilot and was unable to gain control. Lack of awareness that the mode had 
been changed and inability to predict how automation and human control would affect behavior 
in these conditions were both likely contributors (Sogame and Ladkin, 1996).  
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An Airbus flight test with very skilled crew also ended in a crash following a 
combination of conditions that produced both unexpected mode change and inability to 
compensate for the autopilot behavior in this mode (Aviation Week and Space Technology, 
1995); also discussed in (Sarter et al., 1997). This case involved an automation-initiated mode 
change due to the extreme conditions of the test, and inadequate time to diagnose and recover 
from the control policy in this mode. Problems were compounded because automatic 
decluttering—designed to simplify the displays in an emergency—removed all flight mode 
enunciators from the display, leaving the pilot with no visible indicator of control mode. In 
another incident, unexpected effects of disengaging the autopilot led to Pilot Induced Oscillation 
resulting in passenger injury (Encounter with Wake Turbulence, Air Canada, Airbus A319-114 
C-GBHZ, 2008); lack of understanding the effects of mode change was a probable contributor. 

An example in the space domain where lack of transparency imposed a potential risk on 
safety can be found in Apollo 10. In this example, poorly communicated information about 
actions and state changes of both automation and crew potentially put safety at risk with 
accidental operations (Shayler, 2000). During Apollo 10, at the end of the second pass over lunar 
landing site 2, the two crewmembers were preparing to separate the two stages of the lunar 
lander and return to the command module in orbit around the moon when the mode of the 
guidance and navigation system was inadvertently changed by one of the crewmembers. A 
couple of seconds later, the other crewmembers reached up, without looking, and changed the 
mode of the guidance system, which canceled the change that had been made by the first 
crewmembers. As a result, the lunar module, Snoopy, began firing thrusters in all axes, pushing 
the gyroscopes into gimbal lock and making the navigation system useless until it was reset. The 
crewmembers then toggled the navigation system switch again and, although it was now put into 
the mode it should have been in to start with, the situation was made worse. At this point the 
crew overrode the computer and took manual control. The incident lasted about 15 seconds, 
during which Snoopy made eight complete rolls. It was estimated that if the crewmembers had 
not regained control within another 2 seconds, it would have been too late to avoid impact with 
the moon.  

Sarter and Woods (1995) offer multiple solutions to alleviate the mode errors issue: 
reduce complexity of automated systems, find new training methods and train in context, 
develop new methods to facilitate mode awareness (e.g. displays that indicate current system 
state with justification and possible future states), forcing functions (prevents a change until the 
current problem is corrected), and “management by consent” (requires operators to approve 
changes before they take effect). Nunes (2003) instead emphasizes development of accurate 
mental models as a method to support mode awareness and hence, automation transparency.  
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Fundamentally, acquiring an accurate mental model of the automated system is critical 
for maintaining mode awareness. A mental model is the framework that manifests knowledge 
and understanding of a system’s operating elements and processes to infer about its future 
behavior. Mental models are formed from past experiences, expectations, and system feedback, 
and requires time to develop. Nunes (2003) proposes a particular strategy to training for accurate 
mental models based on her experience studying air traffic controllers using decision support 
tools: 1) Develop methods to determine what underlying mental model the operator has, and 
methods to assess the effects that automation has on human performance; 2) Develop tools that 
decrease cognitive workload while keeping information processing high, and train operators on 
how the automated system works and why it works the way it does; and 3) Educate users on the 
benefits and drawbacks of automation. However, decreasing cognitive workload is not 
universally supported amongst researchers. Pea (1993), Salomon (1993), and Wickens (1992) 
have argued that decision support tools that decrease cognitive workload have the potential to 
jeopardize an operator’s problem solving and learning ability, as a result of the operator’s 
decreased cognitive effort in the processes taking place (Nunes, 2003). 

Mental models are also essential for maintenance of situation awareness (SA); SA is not 
only perception of elements in current environment, but also the integration and comprehension 
of these elements, and the projection of future status based on comprehension (Endsley, 1995). 
Dependency on automation has been shown to lead to decreased SA (e.g., Strauch, 1997). 
Endsley and Kiris (1995) has shown that higher levels of automation are associated with out-of-
the-loop syndrome, the consequence of complacency and degradation in skill and situation 
awareness resulting from prolonged supervisory control of automation. Kaber and Endsley 
(1997) conducted a study to examine the effects of the 10 levels of automation on operator 
performance and situation awareness. Results from this study reveal that participants were better 
able to recover from automation failures when the level of automation during the task involved 
human interaction (i.e., lower LOA). In the space domain—where operators conduct tasks in an 
extreme environment with high inherent safety risk—SA is essential.  

 

A series of supervisory control pilot automation interaction studies within glass cockpit 
aircraft (Sarter and Woods, 1995) exposed further the relationship between mode awareness and 
automation complexity. Pilots were observed during their transition from a conventional to glass 
cockpit. Results from the field experiment revealed that the pilot’s lack of mode awareness and 
incomplete understanding of how the various modes interrelate was related to the complexity in 
the automation. Automation complexity, including simultaneous use of the system by multiple 
operators can increase the time to detect an anomaly and time to recover from errors. One pilot, 
for example, followed through correctly with a task because he was following standard 
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procedure, not because he understood how the automation modes interacted. Another set of 
pilots had difficulty detecting an anomaly and/or deducing its consequences. Other pilots made 
changes to the automation, but failed to activate them and did not understand why their changes 
did not take effect. Additionally, automation complexity can incite inadvertent mode changes, 
which may not bring about instant visible consequences (Sarter and Woods, 1995). In order to 
have automation transparency, the operator must understand how the various modes interrelate, 
have a high situational awareness of the current system state, past states, and possible future 
states, and be provided with appropriate feedback of system status and transitions. 

Designing for transparency is very difficult for systems that are very complex and require 
many displays and controls. Kieras (1996) points out two strategies used for handling 
complexity: distributing displays and controls across physical space, as on older “switch and 
meter” systems, and distributing displays and controls across time, as with newer software-based 
systems, using multiple modes. Information can be spread across time with different information 
displayed in the same space at different times, depending on context. In older electro-mechanical 
systems, displays and controls were fixed physical devices, and instrumentation was spread over 
the surfaces needed to contain it. In these systems, inadequate design led to mode errors because 
information was often widely and awkwardly distributed. A critical factor in the Three Mile 
Island events was display layout: a distributed and awkward arrangement made the state of the 
system hard to grasp, and so failure diagnosis was difficult (Leveson, 1995).  

Transparency in automation and/or robotics interacts with functional task allocation 
(another contributing factor in HARI). We have already mentioned the work interrelating 
situation awareness and the functionality allotted to automation. Additionally, Endsley and Kiris 
(1995) suggest the use of an intermediate level of automation keeps the operator in-the-loop. In a 
study of detection of changes in system dynamics, Kessel and Wickens (1982) compared 
detection performance between operators controlling and monitoring system dynamics. 
Participants were in one of three groups: 1) transferred from manual operation to automatic, 2) 
transferred from automatic operation to manual, or 3) control group for automatic. Results from 
this study indicate that detection is slower when an operator is in an automatic mode, than in a 
manual control mode. Additionally, there is a positive-transfer from the manual mode to the 
automatic mode, which implies that is it best to train operators in a manual level of automation 
because they will be more perceptive of system changes once they transfer to a more automatic 
level of automation. Parasuraman suggests that having operators intermittently assume manual 
control improves failure detection (as cited by Endsley and Kaber, 1999). 

Risks from poor transparency concerning mode state and mode behaviors are most 
dangerous during unfamiliar conditions, frequently including operation in a less safe 
environment. While the conditions that trigger problems may be rare in aviation, unfamiliar 
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mode combinations and unsafe environments will occur more frequently in space. Complex 
automation is powerful in part because it provides multiple control policies, which can be 
selected based on circumstances. Yet managing different modes is a key locus of ineffective 
integration. Understanding design and design trade-offs in managing complex control policies is 
essential to effective HARI. 

D. Contributing Factor 4: Human/Robotic Coordination 

Coordinating human and robotic activities for future space exploration creates challenges 
in many areas, but particularly for Human-Robot Interaction (HRI). Most research in this field is 
in its infancy, as evidenced primarily by the fact that human teleoperation, supervisory control 
and teaming have limited operational implementations in space, military, or industry. Currently, 
interaction with automation and robots relevant to space exploration is achieved through 
teleoperations, where one or multiple operators remotely control robots. During future space 
teleoperations, the operators and robots will be separated by an immense distance, so much that 
time delay associated with communicating over those distances may negatively affect 
performance if operators do not calibrate to it. In addition, the level of automation within the 
system will vary and undoubtedly, at one point or another, the operator will be involved in 
supervisory control of the system, or robot(s). Supervisory control can cause degradation in 
situational awareness and skill, system over-reliance or complacency, mode-related errors, and 
ultimately mission failure. Effective HARI must take these conditions into account for designing 
future HRI. 

NASA’s experience with in-space, robotic applications are limited to the Shuttle and 
Station robotic arms, and an experimental flight of the Autonomous Extravehicular Activity 
Robotic Camera Sprint robot in 1997 (Pederson, et al, 2003), all of which are controlled by on-
orbit crew via direct teleoperation. Surface exploration robots such as Sojourner, Phoenix and the 
Mars Exploration Rovers have been used extensively for over a decade but their operations are 
open-loop, where the human must send sequences of commands rather than act on fed-back 
information in real-time due to the long signal time delays between Earth and Mars. We will be 
facing increasing complexity of future robotic systems as we move from direct teleoperation to 
supervised teleoperation and autonomous control, with both spatial and temporal distances 
between operator and robotic agent. Employing human-robot teams will require a level of 
coordination not previously realized among teams of robotic controllers, astronauts, and mission 
controllers. Without overcoming the complex and varied HRI challenges facing the system 
designers, we are at risk of not fulfilling the roles envisioned of NASA human-robot systems.  

Risk is inherent due to our lack of knowledge and experience with how best to design 
HRIs to meet the capabilities required of future human-robotic systems. However, there have 
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been many lessons learned from the years of Shuttle, Station and Mars robotic operations. 
McCurdy (2009) describes the iterative process that evolved the tools used by the Mars robot 
operators to plan and execute commands. After tactical processes were implemented, they found 
that they were not able to support the deadlines that the tasks demanded. Planning tools were 
developed to meet the necessary timelines, but these too suffered inefficiencies (Norris, et al., 
2005). After applying human-centered principles, several interface issues were identified. For 
instance, they found that a large number of tools designed by different groups for differing 
purposes were inconsistent and non-cohesive, leading to steep learning curves as well as 
performance issues. Additionally, they found that the primary timeline tool was based on 
outdated legacy software and developed with a different user population in mind; this led to 
significant effects on their ability to make or miss an uplink deadline. As a result, tool design 
implementations were deployed for the next Mars mission, Phoenix Mars Lander. 

Optimized robotics operations are critical for the successful execution of extravehicular 
activities (EVA) onboard the ISS. According to data contained in the FCI ISS Life Sciences 
Crew Comments Database, this includes the proper set up and configuration of the onboard 
Robotic Workstation (RWS) and subsequent actuation and execution of arm operations. The 
RWS for both the Space Shuttle Remote Manipulator System and Space Station Remote 
Manipulator System (SSRMS) consists of a laptop computer, translational and rotational hand 
controllers, three video monitors and a display and control panel. Robotics workstations onboard 
the ISS are currently located in the US Lab, Cupola and Japanese Pressurized Module. Although 
the workstation can be operated by a single crewmember, in practice, crewmembers prefer that 
RWS activities be conducted with two crewmembers. One person acts as the primary controller, 
and the second crewmember is dedicated to managing camera operations, observing procedures, 
and confirming the direction of motion. They report that this allows them to increase their 
situation awareness and maintain a system of checks and balances. They have noted that the 
second crewmember does not necessarily have to be another on-orbit crewmember and could be 
a ground crew operator. However this depends on maintaining real-time communication with 
Mission Control, which is not always possible. The crew has cited improvements that are needed 
to the Remote Manipulator System controls, including more camera views and assistive overlays.  
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Figure 2: European Space Agency astronaut Leopold Eyharts, STS-123 mission specialist, and 
astronaut Greg Johnson, pilot, perform work at the robotics workstation in the U.S. laboratory, 

Destiny. 

 

Figure 3: Completing an EVA activity using the robot arm with a crewmember on the end from 
inside the shuttle requires careful allocation of functions and task planning. 
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Given the already strained robotics crew resources and the large number of robotic and 
EVA operations expected for ISS, utilizing ground control is an attractive option for off-loading 
on-orbit crew workload and maximizing the efficiency of end-to-end ISS operations (Coleshill, 
et al., 2009). In 2005 during STS-122/ISS 10A, the planned efficiencies were finally realized: the 
majority of pre- and post-operation configurations for SSRMS were allocated to ground control. 
Adjustments had to be made to reduce the constraints on the step size of arm motions allowing 
greater movement distances in less time. These were originally implemented by safety personnel 
to reduce the duration of each maneuver, thereby limiting the number of unplanned loss of 
communication signals between the ground and the ISS. Task analyses determined the best 
allocation of operations between the on-orbit crew and the ground. This type of coordination will 
be critical as control of remotely located robotic agents becomes more commonplace in an 
environment of increasing time delay and loss of signal (LOS) events (Aziz, et al., 2010).  

For Shuttle and ISS operations and in cases where the time delay allows, ground control 
should be used to the greatest extent possible to reduce EVA time and increase the probability of 
completing EVA goals. For surface operations, this could involve a robotic operator in a habitat 
controlling an external robot to maximize the efficiency of surface EVAs. Currently, some 
barriers to extensive ground control exist because mission controllers place a high level of 
restriction upon the type and methods of operation allowed until more experience is gained. 
Additionally, the robotic systems along with their human interfaces were designed for on-orbit 
use and are not tailored to the needs and limitations of a remote operator. At present, the range of 
operations is limited and while crew on-orbit workload has been reduced, the overall timelines 
have not (Webb, et al., 2009).  

The Special Purpose Dexterous Manipulator (SPDM), or Dextre is a two-armed 
manipulator mounted on the SSRMS as part of the Mobile Servicing System. It is designed to 
perform dexterous robotic maintenance, payload servicing, and other miscellaneous tasks. Even 
before the system was launched in 2008, it was determined that within the accepted operations 
constraints, the timelines associated with its use would be excessive and beyond the crew 
resources that were available. A Technical Interchange Meeting was convened in 2002 to look at 
the prohibitively long end-to-end timelines. They are due in part to robot design, wherein one 
arm is required for stabilization, resulting in tasks being reduced to single-arm tasks. There is 
also no direct operator viewing, large numbers of procedural steps, and robotic tool manipulation 
is required for almost all Removal and Replacement (R&R) situations (Caron, 2004). 
Additionally, procedures are entirely pre-planned and approved, leaving little to no ability to 
respond to real-time anomalies or contingencies. This plagued a recent SPDM activity in 
December 2010 wherein operations had to be halted for over a day while they re-planned based 
on an anomaly. Several enhancements such as auto-sequencing and targeting overlays are in the 
early stages of development to help mitigate these issues.  
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Figure 4: In June 2008, Dextre was moved atop the Destiny Laboratory Module of the 
International Space Station (ISS), completing tasks prior to the STS-124 mission's deployment of 

Japan's Kibo pressurized science laboratory. 

Currie and Rochlis (2004) conducted a study using the SPDM trainer to assess the 
feasibility of ground control operations under a time delay, a condition that will become of 
primary concern for robotic operation as we move beyond Low Earth Orbit exploration. 
Astronaut test subjects conducted an Orbital Replacement Unit (ORU) R&R activity with 
simulated six and eight second telemetry and video time delays (LOS conditions were not 
modeled in this experiment). Crew found that they could easily adapt to the delays and all 
subjects were able to successfully complete the activity. Interestingly, more than fifty percent of 
the ground control operational time was spent not on motion command inputs via the hand 
controllers, but on manipulating displays, cameras, and controls to gain and maintain situation 
awareness. This implies that performance increases are to be gained from more effective 
interface designs (Currie and Rochlis, 2004).  

Human interface improvements such as augmented reality have also been investigated 
(Maida, et al., 2007). Although a human-in-the-loop command mode is available for SPDM, it is 
operated almost exclusively using automated sequencing from the ground, where camera views 
and situation awareness information is at a minimum. Their results indicate that overlays 
improve performance in maneuvering an ORU in preparation for inserting it into a receptacle, 
and three performance metrics showed statistically significant improvements in prepositioning 
accuracy using overlays.  
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Display design can be modified various ways to improve human-robot interaction. 
Improvement in perception allows for better understanding of the environment, improved 
function (Chen and Joyner, 2009; Darken and Cervik, 1999), and decrease in operator workload 
(Park and Woldstad, 2000; Yeh and Wickens, 2001). Operators’ field of view plays a role in 
human-robot interaction, where optimal views are likely to be determined per tasks (Smyth, 
Gombash, and Burcham, 2001). Additionally, research suggests that a third-person point of view 
during HRI (which is referred to gravity-based orientation) improves performance (Thomas and 
Wickens, 2000). In addition, auditory and tactile feedback improves operator performance when 
task complexity increases. Prewett, Johnson, Saboe, Elliott, and Coovert (2010) propose various 
ways of improving operator performance, while decreasing operator workload, which include: 1) 
increase the frequency at which the camera produces frames to an optimal human information 
processing level, 2) minimize system delays, and 3) provide naturalistic displays. Pazuchanics 
(2006) suggests incorporating contextual information into interface features can decrease 
operator workload.  

While robotics operations conducted onboard the Space Shuttle and ISS involve ground 
crews supporting and monitoring all aspects of crew robotics tasks, future spaceflight missions 
will involve increased crew autonomy and, correspondingly, a decrease in ground support during 
robotics operations. Kadous, Ka-Man Sheh and Sammut (2006) highlight that teleoperation is a 
vital consideration for robotics activities and interaction with robots. Successful robotic 
operations rely on optimized design of user interfaces. This includes the development of user 
interfaces that allow for varying levels of autonomy, cooperation and interaction between 
humans and robots (Kadous, et al., 2006).  

Systematic assessment of human-robotic interfaces and the methods and metrics used to 
do so are still emerging. While specific, agreed upon attributes for human-robotic user interfaces 
do not yet exist, Kadous, Ka-Man Sheh and Sammut (2006) highlight several guidelines to 
consider. These guidelines are derived from previous design principles developed by Scholtz 
(2004). They include awareness, efficiency, familiarity and responsiveness. Awareness involves 
the proper presentation of information to ensure operators have a complete mental model 
regarding the robot’s internal and external state. This necessitates creating a balance to avoid 
overloading the operator with too much information. Efficiency involves requiring as little 
operator hand and eye movement as possible and ensuring focus of attention. Familiarity 
involves a focus on the inclusion of intuitive information and concepts that the operator is 
familiar with and an avoidance of the presentation of unfamiliar information. Finally, 
responsiveness guarantees an operator is receiving continuous feedback regarding operations. 

Keyes et al. (2010) similarly contend that overall awareness is key for the successful 
completion of robotics tasks. Robotic operations will often occur outside of the human operator’s 
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line of sight. This requires the human to have acute knowledge of all aspects of the working 
conditions and environment that the robot will be operating in as well as the state of the robot 
(Keyes, et al., 2010). Drury, Keyes, and Yanco (2007) define this level of human-robot 
awareness by five individual characteristics, namely, human-robot awareness, human-human 
awareness, robot-human awareness, robot-robot awareness, and the human’s overall awareness 
of the mission (Drury, et al., 2007). Kadous, Ka-Man Sheh and Sammut (2006) contend that 
robot operations should embody the operator, while the operator in turn should strive to imagine 
themselves as the robot (creating a sense of ‘presence’), or in the same environment as the robot, 
during operations. However, this methodology can encounter barriers such as the varying 
morphologies between the robot and the operator, and issues with sensing and perception. 
Operators may encounter problems with control and interaction if they feel they cannot relate to 
or sense the robot’s operations. Ensuring complete situation awareness is available through the 
HRI is critical.  

Trafton, et al. (2005) also provide guidelines for the design of human-robot interfaces. 
They suggest a human-to-human interaction model, which involves using interactions between 
people as a guide to design the planned human-robotic interactions. While there are many 
aspects of human-to-human interaction, a desired characteristic of human-robotic interaction is a 
human’s ability to apply alternative viewpoints and reason from this perspective, although it may 
vary from their day-to- day point of view. Various forms of perspective taking can apply to a 
multitude of tasks and situations. Although this seems to likely be a successful guideline for 
human-robot interface design, recent literature and research rarely address perspective taking and 
robots.  

Trafton, et al. (2005) conducted research to attempt to understand how perspective taking 
is already used or could be applied to spaceflight EVA. They observed and analyzed EVA 
training activities at the NASA Johnson Space Center Neutral Buoyancy Laboratory and 
determined that spatial-perspective taking was occurring during these activities. This involves 
such examples as the meaning of the word “down” having a totally different definition in a six 
degree-of-freedom EVA environment (where one would have to know what “down” was in 
relation to) as opposed to on the ground. This weightless operational environment can create 
specific challenges from a spatial perspective. Based on this applied analysis, three guidelines 
were developed to assist with understanding and designing human-robotic interactions from a 
human-human interaction point of view. They include: 1) ensuring that all aspects of robotic 
representation and cognitive-like functioning (such as reasoning and perception) are as human- 
like as possible, 2) building cognitive systems for the interactions based on integrated cognitive 
architectures, and 3) applying heuristics and principles for collaborative activities that align with 
human expectations. Overall, similar to human-to-human perspective taking, a robot should be 
able to assume and adapt to multiple perspectives while performing tasks to allow for optimized 
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human-robotic interaction. Lastly, the researchers discuss how the issue of collaboration between 
humans and robots is one of the most difficult aspects to study. Their analysis attempts to answer 
questions such as when to collaborate, when to ask for help, and how to respond to assistance.  

Human-robot teammates must orchestrate if an effective team is to be desired. To build a 
successful human team, team members must share a common goal, share mental models, 
suppress individual needs for group needs, view affinity as positive, understand and achieve their 
role within the team, and have trust for each other (Groom and Nass, 2007). Robots, though, do 
not have mental models, individual values and beliefs to guide them, or even self-motivation; 
robots lack the essential qualities of a successful teammate. It is difficult to establish fixed 
criterion for operating teams of humans and robots because each human will bring their own 
prior experiences and knowledge, and the allocation of tasks between humans and robots will 
differ from mission to mission. To mitigate these issues, Groom and Nass (2007) developed 
fundamental questions to be addressed in order to determine accurate operating policies for 
human-robot teams: 

• What are the restrictions of humanness that limit performance? 
• Which inabilities of humans can be successfully implemented in robots? 
• What organizational structure best optimizes both human and robot abilities? 
• If an organizational structure familiar to humans is ideal, do robots have the potential to 

fulfill the social duties of roles within that structure, and is developing those abilities 
worth the effort? 

McIntyre, et al. (2003) have focused their research on the nature of teams, their 
interrelations, and how they develop team cohesion. While this research is in reference to human 
teams, these concepts can apply to interactions within human-robotic teams. Team cohesion can 
be defined by both social and task cohesion. Social cohesion involves the desire to achieve team 
affiliation. Task cohesion involves the efforts of the team to achieve tasks and goals together as a 
team (Craig and Kelly, 1999). McIntyre, et al. (2003) highlight a teamwork process model 
known as the “Dickinson-McIntyre model” (Tedrow 2001) which can be mapped to the 
development of human-robotic teams. The model details seven components of teamwork which 
provide a framework that leads to optimized task performance. The elements include 
communication, team orientation, team leadership, monitoring, feedback, backup behavior, and 
coordination (Tedrow, 2001).  

It is also critical to evaluate the dynamics of a human-robot team to determine its 
effectiveness. Olsen and Goodrich (2003) believe the goal of human-robot interactions is to 
minimize the amount of time an operator spends manipulating a robot (robot attention demand or 
RAD) so that s/he has time to focus on other tasks. RAD is derived from the following equation: 
RAD = IE / (IE + NT); where IE (interaction effort) is the amount of time required to interact 
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with a robot and NT (neglect tolerance) is the robot’s autonomy. The difficulty lies in 
determining IE, since interaction may be cognitive, which is not as apparent as physical 
manipulation (Olsen and Goodrich, 2003). Other variables that must also be considered when 
determining operating policies for teams of humans and robots include the human’s trust in the 
robot, task context and complexity, number of operators and robots, interface design, and goals 
(other contributing factors for effective HARI). 

Ferketic et al. (2006) address NASA’s “Vision for Space Exploration” (VSE) initiative 
established in 2004 and its primary goal of establishing a human-robotic program for future 
exploration. Unlike previous exploration programs, VSE places specific attention on human-
robotic interaction capabilities and on integration to enhance exploration, safety and mission 
success. While new NASA programs are still being defined (as of 2013), the emphasis on 
human-robotic programs remains. The design of these missions that include human and robotic 
agents is significantly important and complex given potential long-duration and deep space 
missions that will involve increased crew autonomy, limited communication and minimized 
dependence on ground support. Increased reliance on human-robotic interaction in future mission 
objectives will lead to a significant change in the philosophy for the design and execution of 
missions. Crews will be expected to be comfortable and familiar with robotic user interfaces, and 
these interfaces must optimally support mission objectives (Ferketic, et al., 2006).  

Similar to many other researchers, Ferketic et al. (2006) highlight the current lack and 
increasing need for establishing standards to define effective human-robotic interaction and 
design interfaces. While human engineering and human-centered design standards can apply, 
specific guidelines are needed based on the unique demands of long-duration spaceflight 
missions and the nature of interactions and objectives related to human-robotic operations. 
Developing HRI standards can be extremely complex as most robots are developed with 
customized interfaces and methods of interaction, and the level of coordination and control 
required is often highly task dependent. In order to standardize these types of operations and 
interactions, common metrics and measures must be developed. This includes fundamental 
commands, operations, and interfaces that lead to expected and similar responses from the 
robots. This will subsequently lead to increased consistency in robotic actions, operators’ 
familiarization and comfort with control and operation of the robots, and decreased risk of errors 
and mission objective failures. In an effort to develop standards for human-robotic interactions 
during spaceflight missions, Ferketic et al. (2006) provide their guidelines, which include:  

• define the capabilities and limitations of humans and robots 
• develop user interfaces suited to the tasks at hand 
• address any related challenges to efficiency and operations to allow for human-robotic 

collaboration 
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• establish prototyping and evaluation methods  

These guidelines will allow for the evolution of human-robotic interaction, increased 
safety, and successful collaborative task completion. 

VI. Computer-Based Modeling and Simulation 

Understanding and predicting human-system performance and identifying risks that may 
be inherent in a concept or a design is often achieved via computer-based modeling or 
simulation. The use of human performance models can result in significant lifecycle cost savings 
as compared to repeated human-in-the-loop evaluations, but accurately modeling the human is 
extremely difficult. In the Space Human Factors Engineering domain, modeling and human-in-
the-loop evaluations must be used in concert. We do not have high-fidelity human performance 
models, and most of those existing models have not been sufficiently validated or certified. 
Accordingly, models must be used in a limited fashion – i.e., to help determine the critical areas 
that should be addressed through the more costly, but more representative human-in-the-loop 
evaluations. 

A variety of methods exist for testing existing or prototyped HARI designs. Direct 
assessment by observing people using the system is valuable. However this may be impractical 
or excessively expensive for some complex, safety critical systems. Modeling provides a 
complementary assessment approach. Operations can be modeled both at the level of a task 
analysis and at the level of human performance. Systems can be formally checked for specified 
properties, such as occurrence of a particular unsafe state (Clarke and Wing, 1996). Various 
modeling methods from cognitive science can simulate human performance (Card, Moran, and 
Newell, 1983; Gray, 2008; B. E. John, Prevas, Salvucci, and Koedinger, 2004). Modeling is 
primarily applicable for an existing design, as evaluation, and few models provide direct design 
guidance. However, modeling a system as it is being developed has provided formative feedback 
used by designers that substantially contributes to the effectiveness of the final design (Gray, B. 
John, and Atwood, 1993). 

Man-Machine Integration Design and Analysis System (MIDAS) Function Allocation 
Support Tool (FAST) Development (Sebok et al. 2012) integrated Gore’s MIDAS with the Basic 
Operational Robotics Instructional System (BORIS), which is a robot arm simulation training 
environment, and developed the MIDAS-FAST to predict operator performance in different 
robotic system automation conditions. BORIS is the primary instructional aide in the General 
Robotics Training program at JSC for training general robotic arm control concepts and camera 
manipulations. It consists of a six-joint generic robot arm in a simulated room with a table and 
latches for securing payloads. The MIDAS model and BORIS simulation are connected via a 
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middleware application and accessed through a graphical user interface. The model and 
simulation produce three main types of output: a dynamic representation of arm movement in the 
BORIS environment; a dynamic visualization of predicted operator performance, including the 
operator’s view cone and attention shifts, workload, situation awareness, camera selections, and 
major actions; and data files describing operator and simulation performance. At the time of this 
write up, experimental Human-in-the-Loop studies are being conducted to evaluate several 
conditions that were modeled. Although MIDAS-FAST is being developed for NASA space 
applications, many aspects of the tool also apply to other industries that use robotic technology. 
For examples, MIDAS-FAST can be used to predict operator performance for designing 
complex robotic systems, such as autonomous unmanned aerial vehicles, to identify which 
automation features will best (and most robustly) support performance. It could also be used to 
evaluate existing robotic systems to proactively identify potential problems and to plan targeted 
training interventions as needed. 

VII. Risk in Context of Exploration Mission Operational Scenarios 

Future exploration-mission scenarios will increase in duration and in distance from earth. 
This will require developing new technology, new work methods, and new ways of ensuring that 
these novel elements are suitably integrated. In particular, new automation and robotic 
technology and new ways of using technology to accomplish mission objects are needed. 
Missions carried out in space will need greater flexibility and less dependence on ground 
support, and new interaction between ground-based resources and crew will also be needed. 
Risks from inadequate design of human-technology interaction will increase as mission 
requirements become more demanding and as missions are carried out in unfamiliar 
circumstances substantially different from our experience base. Human factors principles will 
need to be extended and applied to reduce risk. 

Good design is foundational to reducing integration risks, both of safety and of failure to 
complete missions due to inefficiency or ineffectiveness. While poor integration design may be 
partially mitigated by extensive training or other workarounds, good design reduces costs, 
increases efficiency, and enhances safety. Most space exploration missions are carried out 
through human use of technology (automation/robotics). Thus, the scope of impact of the design 
of human-automation/robotic integration is very large. In turn, applying effective design methods 
and implementing effective designs can have a very large, beneficial impact on operational 
success. Gaining the benefits of good design also requires effective implementation and 
evaluation. 
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VIII. Gaps 

Potential research gaps related to HARI include, but are not limited to: 

• Improved tools and techniques for allocating functions between humans and 
automated/robotic systems are needed.  

• Metrics and methods for evaluating automation trust are needed.  Particularly, it is 
important to determine an appropriate level of trust for a specific system design and to 
detect situations where human operators under- or over-trust automated and robotic 
systems. 

• Design requirements, guidelines, and validation methods are needed to ensure that 
systems supporting human-automation and human-robotic interactions will provide 
adequate situational awareness by human crew, including information about the state and 
actions of automated and robotic systems. 

• Design requirements, guidelines, and validation methods are needed to ensure that human 
interfaces for operation and control of automated and robotic systems accommodate the 
unique points of view and operating environments of human and robotic agents. 

 

A summary of all SHFE gaps can be found in the Human Research Roadmap Content 
Management System at http://sa.jsc.nasa.gov/hrrcms/. 

IX. Conclusion 

The success of future exploration missions depends, even more than today, on effective 
integration of humans and technology (automation and robotics). This will not emerge by 
chance, but by design. Both crew and ground personnel will need to do more demanding tasks in 
more difficult conditions, amplifying the costs of poor design and the benefits of good design. 
This report has presented evidence for the importance of good HARI design and the risks from 
poor design from several perspectives:  

1. If the relevant functions needed for a mission are not identified, then designs of 
technology and its use by humans are unlikely to be effective: critical functions will be 
missing and irrelevant functions will mislead or drain attention.  

2. If functions are not distributed effectively among the (multiple) participating humans and 
automation/robotic systems, later design choices can do little to repair this: additional 
unnecessary coordination work may be introduced, workload may be redistributed to 
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create problems, limited human attentional resources may be wasted, and the capabilities 
of both humans and technology underused.  

3. If the design does not promote accurate understanding of the capabilities of the 
technology, the operators will not use the technology effectively: the system may be 
switched off in conditions where it would be effective, or used for tasks or in contexts 
where its effectiveness may be very limited. 

4. If an ineffective interaction design is implemented and put into use, a wide range of 
problems can ensue. Many involve lack of transparency into the system: operators may 
be unable or find it very difficult to determine a) the current state and changes of state of 
the automation or robot, b) the current state and changes in state of the system being 
controlled or acted on, and c) what actions by human or by system had what effects. 

5. If the human interfaces for operation and control of robotic agents are not designed to 
accommodate the unique points of view and operating environments of both the human 
and the robotic agent, then effective human-robot coordination cannot be achieved.  
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XII. List of Acronyms 

 
BASI Bureau of Air Safety Investigation (Australia) 
BORIS Basic Operational Robotics Instructional System 
EVA Extravehicular Activities 
FAA  Federal Aviation Administration 
FCI Flight Crew Integration  
HARI Human Automation/Robotic Interaction 
HCI Risk of Inadequate Human-Computer Interaction 
HRI Human Robot Interaction  
HRP Human Research Program 
IE interaction effort 
ISS International Space Station 
LOA Levels of Automation 
LOS Loss of Signal 
MIDAS Man-Machine Integration Design and Analysis System 
MIDAS-FAST Man-Machine Integration Design and Analysis System Function Allocation 

Support Tool 
NASA National Aeronautics and Space Administration 
NT neglect tolerance 
ORU Orbital Replacement Unit 
R&R Removal and Replacement 
RAD robot attention demand 
RWS Robotic Workstation 
SA Situational Awareness 
SHFE Space Human Factors Engineering 
SPDM Special Purpose Dextrous Manipulator  
SSRMS Space Station Remote Manipulator System 
TASK Risk of Inadequate Critical Task Design 
TRAIN Risk of Performance Errors Due to Training Deficiencies 
VSE Vision for Space Exploration 
 


